平面变压器在开关电源中应用的优越性分析_欧宝体育棋牌-欧宝体育客户端-欧宝全站app官网
欢迎光临~欧宝体育棋牌
服务热线
全国客服热线:

15966610619

企业相册

平面变压器在开关电源中应用的优越性分析

来源:欧宝体育棋牌    发布时间:2024-03-16 08:14:41

  近年来,随着电力电子技术的发展和成熟,人们慢慢地认识到磁性元件不仅是电源中的功能元件,同时其体积、重量、损耗在整机中也占相当比例。据统计,磁性元件的重量一般是变换器总重量的30%~40%,体积占总体积的20%~30%,对于模块化设计的高频电源,磁性元件的体积、重量所占的比例还会更高。另外,磁性元件还是影响电源输出动态性能和输出纹波的一个主要的因素。因此,要提高的功率密度、效率和输出品质,关键是提高其中磁元件的功率密度,降低磁性元件的体积和重量。因为其特殊的平面结构和绕组的紧密耦合,使得高频寄生参数得到了很大的降低,极大改进了

  变压器是电源中的一个关键元件。传统的绕线变压器通常由铁氧体磁芯及铜线圈构成,体积非常庞大而且易产生电磁干扰。而平面变压器与传统的绕线变压器最大的不同之处在于铁芯及线圈绕组。平面变压器采用小尺寸的E型、RM 型或环型铁氧体磁芯,通常是由高频功率铁氧体材料制造成,在高频下有较低的磁芯损耗;绕组采用多层印刷电路板迭绕而成,然后迭放在平面的高频磁芯上构成变压器的磁回路。图1中表示出了一种典型的多层板平面变压器结构。这种设计有低的直流铜阻、低的漏感和分布电容,可满足谐振电路的设计的基本要求。而且由于磁芯良好的磁屏蔽,可抑制射频干扰。并且平面变压器原边绕组的匝数通常也只有数匝,不仅大大降低了铜损和分布电容、电抗,而且为绕制带来了很多便利。由于磁芯是用简单的冲压件组合而成的,性能的一致性大幅度的提升,也为大批量生产降低了成本。从而有效地解决体积及高频问题,为电源变换器的轻型化、小型化提供了可能。

  市面上的平面变压器铁心有带夹槽和无夹槽两种。带夹槽铁心通过厂家提供的夹板来固定;无夹槽铁心之间的固定采用树脂胶合的方式。采用带夹槽铁心的变压器适用于高温升场合,且比较牢固,如图2a所示;无夹槽铁心制成的变压器高度比带夹槽的变压器要低一些。设计者可按真实的情况选择铁心。若选择无夹槽铁心,注意树脂不可粘在两块铁心的结合面,这样铁心之间会存在气隙,应把树脂粘在铁心的外侧,如图2b所示。

  1)体积小,剖面低。由于平面变压器采用了铁氧体磁芯,缩小了变压器的体积,一般高度均小于20mm.

  2)高功率密度。由于平面变压器结构上的优势,提高了其电气特性,使其比传统变压器的功率密度高3倍。

  3)高电压、高电流。在平面变压器中,导线实际是一些平面导体,因而电流密度大,每层绕组最大电流可达200A,次级升压可达20kV以上。

  12)高绝缘性。绕组之间、初-次级及次-次级间具有高绝缘性,初-次级间绝缘隔离可达4kV.

  将现有的三种类型的变压器(常规变压器、压电陶瓷变压器和平面变压器)的性能作比较,见表 1:

  鉴于平面变压器的上述种种技术参数上的优越性,它可以大范围的应用在笔记本电脑、数码相机、数字化电视、通信电源、汽车电子等领域。一只200W的低高度平面变压器仅1 4mm高 ,比传统的高频产品体积小,重量也轻了许多。由于其寄生电抗极小。即绕组间电容和漏电感极小。故效率高达97% ,最高工作频率为2MHz.漏抗小于0.2% .目前国外的微型电子变压器的发展较快,已经生产出5mm×5mm×5mm的微型变压器和厚薄仅为0.2mm的平面变压器,我国少数外资企业已经有此类封装微型电子变压器,而国内企业尚待开发。由于汽车中特殊的电气和机械环境,对变压器设计和工艺提出更严格的要求。平面变压器已经在中档轿车中使用。其次,宽带传输应用的平面变压器,也显示了良好的发展前景。

  从变压器在开关电源中所处的位置上看,平面变压器能分为独立式和嵌入式平面变压器。

  独立式平面变压器是利用平面铜制引线框架或印制板的铜线为绕阻而构成。精密的铜制引线框架或印制绕组使设计规格比线绕变压器更精确地符合标准要求,器件间的重复性水平也得到提高。

  蚀刻铜制引线框架或印制型绕阻被堆叠在平面中,与高频铁氧体磁芯构成变压器的磁路。该设计使其成为一个非常低剖面的变压器组件。在平面设计中实现大的横截面积铜导体使高功率密度和高电流的设计变得更容易。平面绕组和铁氧体的高表面容量比使平面变压器拥有非常良好散热功能。

  特别是在高工作频率下,高转换效率是平面变压器的关键的优势。在绕线变压器中,效率被“趋肤效应”逆反影响,即当高频电流通过圆柱形导体时迫使电子由中部流向边缘集中在铜线表面,由此减少了电流通过的导体横截面积。

  从生产加工的角度来看,平面变压器也优于线绕变压器。绕线变压器通常要求手工操作来剥去在绕线端的涂料,然后再焊锡。而在平面变压器上的压制或蚀刻铜片的引出端常常能形成表面贴装终端以便于增长装配速度和重复性,从面减少成本。

  嵌入式变压器利用DC/DC转换器的电路板作为自己的绕组,它比独立式平面变压器占用空间更小。但它每一组输入/输出电压都要设计不同的电路板,而且,对于嵌入式平面设计,因为蚀刻线圈需要用多层电路板,所以总体成本比较高。一些混合设计利用主板作为初级绕线,然后用分离的小PCB作为次级来产生不同的输出电压。这种设计也很普遍。

  虽然嵌入式设计达到高功率密度并拥有良好的热性能以实现空间节约的特性,但是对于许多应用,这些优点被成本、缺乏灵活性和可互换性所限制。不过高生产量将能在某些特定的程度上抵销嵌入式设计的较高成本。

  不同于其它结构和材料,平面变压器没有像传统变压器那样很长的产生漏感的导线,而是利用铜箔与电路板间的紧密结合,使得在相邻的匝数层间的间隙非常的小,因此在其中的能量损耗也就很小了。在平面型变压器里,其“绕组”是做在印制电路板上的扁平传导导线或是直接用铜泊。扁平的几何形状降低了开关频率较高时趋肤效应的损耗,也就是传统所说的涡流损耗。因此,能最有效地利用铜导体的表面导电性能,效率要比传统变压器高的多。但平面变压器的特性并不全是优点。平面变压器一、二次侧绕组之间的间距较小,储存磁能少,所以漏感也较小;但这样却使得一、二次侧产生的寄生电容变大。另外,PCB绕组的可重现化特性却是以增大铁心绕线窗中绝缘材料的比例为代价,降低了铜填充系数,限制了线圈匝数。能够最终靠调整绕组间的距离调整漏感的大小。

  下面两个表给出了在不同的绕组间距下漏感和交流阻抗的变化。可以明显的看出间隙越大,漏感越大,交流阻抗越小。在间隙增加1mm的状况下漏感值增加了五倍之多。因此在满足电气绝缘需要的情况下,应该选用最细的绝缘体来获得最小的漏感值。